Pandas version checks

  • [x] I have checked that this issue has not already been reported.

  • [x] I have confirmed this bug exists on the latest version of pandas.

  • [ ] I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd
import numpy as np

empty = pd.DataFrame([[None, None, None, None], [None, None, None, None], [None, None, None, None], [None, None, None, None]], columns=list("ABCD"), dtype=np.float64)
print(empty.dtypes)
# A    float64
# B    float64
# C    float64
# D    float64
# dtype: object

full_a = pd.DataFrame([[1.0, 2.0, "3.0", 4.0],[5.0,6.0,"7.0",8.0], [9.0,10.0,"11.0",12.0], [13.0,14.0,"15.0",16.0]], columns=list("ABCD"))
print(full_a.dtypes)
# A    float64
# B    float64
# C     object
# D    float64
# dtype: object


full_b = pd.DataFrame([[1.5, 2.0, "3.0", 4.0], [5.0,6.5,"7.0",8.0], [9.0,10.0,"11.0",12.0], [13.0,14.0,"15.0",16.5]], columns=list("ABCD"))
print(full_b.dtypes)
# A    float64
# B    float64
# C     object
# D    float64
# dtype: object

combined_1 = empty.fillna(full_a)
print(combined_1.dtypes)
# A     int64
# B     int64
# C    object
# D     int64
# dtype: object

combined_2 = empty.fillna(full_b)
print(combined_2.dtypes)
# A    object
# B    object
# C    object
# D    object
# dtype: object

Issue Description

The returned types of pandas dataframe fillna method gives inconsistent resulting types between a column that contains integral float values, and ones that don't. This leads to very confusing behavior, where the exact values of the input data (even if it was correctly starting as float64s in both dataframes) can affect the output types. In particular, if both the starting column and the merging column have the float64 dtype, as a user I would expect the output column to have a float64 dtype, but instead I get an int64 if all the values happen to be integral, otherwise I get an object dtype?! This behavior is further only observed if one of the other columns happen to be (correctly) an object dtype, when again, I expected the types of unrelated columns not to affect each other.

I know there are currently changes undergoing surrounding casting of types, but here as all types are being inputted correctly I didn't expect any casting to be being performed as part of this operation?

Expected Behavior

In the above example, I expected both combined_1 and combined_2 to have the same dtypes as each other. I also expected both of them to actually have dtypes of float64 for cols A, B and D, given the input types are float64. The object type for those columns of combined_2 is particularly confusing in this case

Installed Versions

INSTALLED VERSIONS ------------------ commit : 0691c5cf90477d3503834d983f69350f250a6ff7 python : 3.12.8 python-bits : 64 OS : Linux OS-release : 6.11.0-26-generic Version : #26~24.04.1-Ubuntu SMP PREEMPT_DYNAMIC Thu Apr 17 19:20:47 UTC 2 machine : x86_64 processor : x86_64 byteorder : little LC_ALL : None LANG : en_GB.UTF-8 LOCALE : en_GB.UTF-8 pandas : 2.2.3 numpy : 2.2.6 pytz : 2025.2 dateutil : 2.9.0.post0 pip : None Cython : None sphinx : None IPython : None adbc-driver-postgresql: None adbc-driver-sqlite : None bs4 : None blosc : None bottleneck : None dataframe-api-compat : None fastparquet : None fsspec : None html5lib : None hypothesis : None gcsfs : None jinja2 : 3.1.6 lxml.etree : None matplotlib : None numba : None numexpr : None odfpy : None openpyxl : None pandas_gbq : None psycopg2 : 2.9.10 pymysql : None pyarrow : None pyreadstat : None pytest : 8.3.5 python-calamine : None pyxlsb : None s3fs : None scipy : 1.15.3 sqlalchemy : 2.0.41 tables : None tabulate : None xarray : None xlrd : None xlsxwriter : None zstandard : None tzdata : 2025.2 qtpy : None pyqt5 : None

Also tested on 2.3.0 (sorry, website still says 2.2.3 is latest):

INSTALLED VERSIONS ------------------ commit : 2cc37625532045f4ac55b27176454bbbc9baf213 python : 3.12.8 python-bits : 64 OS : Linux OS-release : 6.11.0-26-generic Version : #26~24.04.1-Ubuntu SMP PREEMPT_DYNAMIC Thu Apr 17 19:20:47 UTC 2 machine : x86_64 processor : x86_64 byteorder : little LC_ALL : None LANG : en_GB.UTF-8 LOCALE : en_GB.UTF-8 pandas : 2.3.0 numpy : 2.2.6 pytz : 2025.2 dateutil : 2.9.0.post0 pip : None Cython : None sphinx : None IPython : None adbc-driver-postgresql: None adbc-driver-sqlite : None bs4 : None blosc : None bottleneck : None dataframe-api-compat : None fastparquet : None fsspec : None html5lib : None hypothesis : None gcsfs : None jinja2 : 3.1.6 lxml.etree : None matplotlib : None numba : None numexpr : None odfpy : None openpyxl : None pandas_gbq : None psycopg2 : 2.9.10 pymysql : None pyarrow : None pyreadstat : None pytest : 8.3.5 python-calamine : None pyxlsb : None s3fs : None scipy : 1.15.3 sqlalchemy : 2.0.41 tables : None tabulate : None xarray : None xlrd : None xlsxwriter : None zstandard : None tzdata : 2025.2 qtpy : None pyqt5 : None

Comment From: iabhi4

Thanks for raising this, I investigated the dtype inconsistency and traced it to how fillna(DataFrame) calls where(self.notna(), other). When one column is object, it triggers coercion of all columns to object, even if others are float64. Replacing this with a column-wise np.where(notna, lhs, rhs) preserves expected dtypes.

Behavior aligns with what users intuitively expect, float columns stay float, object stays object. Same overall complexity (O(n × m)), but avoids full mask allocation and dtype promotion. Can submit a PR if this approach looks good to maintainers

Comment From: jbrockmendel

Replacing this with a column-wise np.where(notna, lhs, rhs) preserves expected dtypes

Operating column-wise is definitely the solution here, but we probably want to keep using the pandas where implementation rather than np.where since it will be robust for non-numpy dtypes.

Comment From: iabhi4

Thanks for the guidance @jbrockmendel! I’ve updated the logic to use Series.where as suggested and added a regression test to ensure dtype preservation