Pandas version checks

  • [x] I have checked that this issue has not already been reported.

  • [x] I have confirmed this bug exists on the latest version of pandas.

  • [x] I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

In [1]: import pandas as pd

In [2]: df = pd.DataFrame({"a": [1, 2], "c": [0, 2], "d": ["c", "a"]})

In [3]: df.iloc[:, df['c']]  # works fine
Out[3]:
   a  d
0  1  c
1  2  a

In [4]: df = pd.DataFrame({"a": [1, 2], "c": [0, 2], "d": ["c", "a"]}).convert_dtypes(dtype_backend='pyarrow')

In [5]: df.iloc[:, df['c']]  # now, it raises
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
Cell In[5], line 1
----> 1 df.iloc[:, df['c']]

File ~/pandas-dev/pandas/core/indexing.py:1189, in _LocationIndexer.__getitem__(self, key)
   1187     if self._is_scalar_access(key):
   1188         return self.obj._get_value(*key, takeable=self._takeable)
-> 1189     return self._getitem_tuple(key)
   1190 else:
   1191     # we by definition only have the 0th axis
   1192     axis = self.axis or 0

File ~/pandas-dev/pandas/core/indexing.py:1692, in _iLocIndexer._getitem_tuple(self, tup)
   1691 def _getitem_tuple(self, tup: tuple):
-> 1692     tup = self._validate_tuple_indexer(tup)
   1693     with suppress(IndexingError):
   1694         return self._getitem_lowerdim(tup)

File ~/pandas-dev/pandas/core/indexing.py:975, in _LocationIndexer._validate_tuple_indexer(self, key)
    973 for i, k in enumerate(key):
    974     try:
--> 975         self._validate_key(k, i)
    976     except ValueError as err:
    977         raise ValueError(
    978             f"Location based indexing can only have [{self._valid_types}] types"
    979         ) from err

File ~/pandas-dev/pandas/core/indexing.py:1613, in _iLocIndexer._validate_key(self, key, axis)
   1610         raise IndexError(f".iloc requires numeric indexers, got {arr}")
   1612     # check that the key does not exceed the maximum size of the index
-> 1613     if len(arr) and (arr.max() >= len_axis or arr.min() < -len_axis):
   1614         raise IndexError("positional indexers are out-of-bounds")
   1615 else:

AttributeError: 'ArrowExtensionArray' object has no attribute 'max'

Issue Description

df.iloc[:, df['c']] works for regular pandas dataframes but raises for pyarrow-backed ones

spotted in narwhals

Expected Behavior

   a  d
0  1  c
1  2  a

Installed Versions

INSTALLED VERSIONS ------------------ commit : 57fd50221ea3d5de63d909e168f10ad9fc0eee9b python : 3.10.12 python-bits : 64 OS : Linux OS-release : 5.15.167.4-microsoft-standard-WSL2 Version : #1 SMP Tue Nov 5 00:21:55 UTC 2024 machine : x86_64 processor : x86_64 byteorder : little LC_ALL : None LANG : C.UTF-8 LOCALE : en_US.UTF-8 pandas : 3.0.0.dev0+1979.g57fd50221e numpy : 1.26.4 dateutil : 2.9.0.post0 pip : 25.0.1 Cython : 3.0.12 sphinx : 8.1.3 IPython : 8.33.0 adbc-driver-postgresql: None adbc-driver-sqlite : None bs4 : 4.13.3 blosc : None bottleneck : 1.4.2 fastparquet : 2024.11.0 fsspec : 2025.2.0 html5lib : 1.1 hypothesis : 6.127.5 gcsfs : 2025.2.0 jinja2 : 3.1.5 lxml.etree : 5.3.1 matplotlib : 3.10.1 numba : 0.61.0 numexpr : 2.10.2 odfpy : None openpyxl : 3.1.5 psycopg2 : 2.9.10 pymysql : 1.4.6 pyarrow : 19.0.1 pyreadstat : 1.2.8 pytest : 8.3.5 python-calamine : None pytz : 2025.1 pyxlsb : 1.0.10 s3fs : 2025.2.0 scipy : 1.15.2 sqlalchemy : 2.0.38 tables : 3.10.1 tabulate : 0.9.0 xarray : 2024.9.0 xlrd : 2.0.1 xlsxwriter : 3.2.2 zstandard : 0.23.0 tzdata : 2025.1 qtpy : None pyqt5 : None

Comment From: skonda29

take