Pandas version checks

  • [X] I have checked that this issue has not already been reported.

  • [X] I have confirmed this bug exists on the latest version of pandas.

  • [X] I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd
filename ='hdfs:///dir/file1'
df = pd.read_parquet(filename) # This will fail, as pa_fs.FileSystem.from_uri(path) does not like hdfs:///, it wants hdfs://host_name/ instead. This will lead to error in bad URI format. 
df = pd.read_parquet(filename, storage_options={}) # This will go through, as fsspec.core.url_to_fs understands hdfs:///

Issue Description

https://github.com/pandas-dev/pandas/commit/0359f1706ebe69df627b58f95c4ae2cee0b5acaf?diff=split&w=0

The above change from 2.1.0, which uses pyarrow fs instead of fsspec seems introduced the problem above. And by reading the code, you can force it to the same old behavior by passing in empty storage_options

Expected Behavior

file with hdfs:/// can be load properly.

Installed Versions

INSTALLED VERSIONS ------------------ commit : ba1cccd19da778f0c3a7d6a885685da16a072870 python : 3.9.18.final.0 python-bits : 64 OS : Linux OS-release : 5.4.0-150-generic Version : #167~18.04.1-Ubuntu SMP Wed May 24 00:51:42 UTC 2023 machine : x86_64 processor : x86_64 byteorder : little LC_ALL : None LANG : None LOCALE : None.None pandas : 2.1.0 numpy : 1.26.1 pytz : 2023.3.post1 dateutil : 2.8.2 setuptools : 63.4.3 pip : 22.2.2 Cython : None pytest : None hypothesis : None sphinx : None blosc : None feather : None xlsxwriter : None lxml.etree : None html5lib : None pymysql : None psycopg2 : None jinja2 : 3.0.3 IPython : 7.34.0 pandas_datareader : None bs4 : None bottleneck : None dataframe-api-compat: None fastparquet : None fsspec : 2023.10.0 gcsfs : None matplotlib : None numba : None numexpr : None odfpy : None openpyxl : None pandas_gbq : None pyarrow : 14.0.0 pyreadstat : None pyxlsb : None s3fs : 2023.10.0 scipy : None sqlalchemy : 1.4.46 tables : None tabulate : 0.9.0 xarray : None xlrd : None zstandard : None tzdata : 2023.3 qtpy : None pyqt5 : None