Pandas version checks

  • [x] I have checked that this issue has not already been reported.

  • [x] I have confirmed this bug exists on the latest version of pandas.

  • [ ] I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd
import numpy as np

query = """
SELECT
    longID
FROM teradata_table
WHERE
longID = 305184080441754059;
"""

dtype = {
    "QueryID": np.uint64,
}

with teradatasql.connect(
    host=HOST, user=USERNAME, password=PASSWORD, logmech="LDAP"
) as connect:
    df = pd.read_sql(query, connect, dtype=dtype)

df.head()
# pandas returns longID 305184080441754048 - close but not quite 305184080441754059

Issue Description

We have trouble when pulling long longID with 18 digits pandas are incorrectly reading the Teradata value. I also tried using cast(longID as decimal(18, 0)) to help Pandas understand the type of longID. So far I haven't found a solution how to fix the problem - incorrect value read. We are using teradatasql version 20.0.0.24 we can confirm that teradatasql is working correctly as it gives us the value below when using query specified above: Decimal('305184080441754059')

with teradatasql.connect(
    host=HOST, user=USERNAME, password=PASSWORD, logmech="LDAP"
) as con:
    with con.cursor() as cur:                    
        cur.execute(query)
        for row in cur:
            print(f"{row}")

^ this works as expected - so we assume that Teradata SQL library is working correctly.

Expected Behavior

We expect to see 305184080441754059 as longID in the pandas dataframe.

Installed Versions

INSTALLED VERSIONS ------------------ commit : 2cc37625532045f4ac55b27176454bbbc9baf213 python : 3.12.9 python-bits : 64 OS : Linux OS-release : 4.18.0-477.15.1.el8_8.x86_64 Version : #1 SMP Thu Jul 20 11:31:48 PDT 2023 machine : x86_64 processor : x86_64 byteorder : little LC_ALL : en_US.UTF-8 LANG : en_US.UTF-8 LOCALE : en_US.UTF-8 pandas : 2.3.0 numpy : 1.26.4 pytz : 2025.1 dateutil : 2.9.0.post0 pip : 25.0.1 Cython : None sphinx : None IPython : 8.32.0 adbc-driver-postgresql: None adbc-driver-sqlite : None bs4 : 4.13.3 blosc : None bottleneck : None dataframe-api-compat : None fastparquet : 2024.11.0 fsspec : 2025.5.1 html5lib : None hypothesis : None gcsfs : None jinja2 : 3.1.5 lxml.etree : 5.4.0 matplotlib : None numba : None numexpr : None odfpy : None openpyxl : 3.1.5 pandas_gbq : None psycopg2 : 2.9.10 pymysql : None pyarrow : 20.0.0 pyreadstat : None pytest : None python-calamine : None pyxlsb : None s3fs : None scipy : 1.15.3 sqlalchemy : 2.0.38 tables : None tabulate : None xarray : None xlrd : None xlsxwriter : None zstandard : 0.23.0 tzdata : 2025.2 qtpy : None pyqt5 : None