Pandas version checks

  • [x] I have checked that this issue has not already been reported.

  • [x] I have confirmed this issue exists on the latest version of pandas.

  • [ ] I have confirmed this issue exists on the main branch of pandas.

Reproducible Example

import numpy as np
df = pd.DataFrame(np.random.randn(100, 100))
%timeit df.stack(future_stack=False)
%timeit df.stack(future_stack=True)
242 μs ± 40.4 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
25.6 ms ± 4.75 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

Installed Versions

INSTALLED VERSIONS ------------------ commit : c888af6d0bb674932007623c0867e1fbd4bdc2c6 python : 3.11.13 python-bits : 64 OS : Linux OS-release : 4.18.0-553.36.1.el8_10.x86_64 Version : #1 SMP Wed Jan 22 03:07:54 EST 2025 machine : x86_64 processor : x86_64 byteorder : little LC_ALL : None LANG : en_US.UTF-8 LOCALE : en_US.UTF-8 pandas : 2.3.1 numpy : 2.2.6 pytz : 2025.2 dateutil : 2.9.0.post0 pip : 25.1.1 Cython : None sphinx : None IPython : 9.4.0 adbc-driver-postgresql: None adbc-driver-sqlite : None bs4 : 4.13.4 blosc : None bottleneck : 1.5.0 dataframe-api-compat : None fastparquet : None fsspec : 2025.7.0 html5lib : None hypothesis : None gcsfs : None jinja2 : 3.1.6 lxml.etree : None matplotlib : 3.10.3 numba : 0.61.2 numexpr : None odfpy : None openpyxl : None pandas_gbq : None psycopg2 : 2.9.10 pymysql : None pyarrow : 20.0.0 pyreadstat : None pytest : 8.4.1 python-calamine : None pyxlsb : None s3fs : 2025.7.0 scipy : 1.14.1 sqlalchemy : 2.0.41 tables : None tabulate : 0.9.0 xarray : None xlrd : None xlsxwriter : None zstandard : 0.23.0 tzdata : 2025.2 qtpy : None pyqt5 : None

Prior Performance

No response

Comment From: mroeschke

Thanks, the performance issue should be addressed once 3.0 comes out xref https://github.com/pandas-dev/pandas/pull/58817