Pandas version checks

  • [x] I have checked that this issue has not already been reported.

  • [x] I have confirmed this bug exists on the latest version of pandas.

  • [ ] I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

(Pdb) pd.DataFrame({"0": [datetime.fromtimestamp(1568888888, tz=pytz.utc)]}).dtypes
0    datetime64[ns, UTC]
dtype: object
(Pdb) pd.DataFrame({"0": datetime.fromtimestamp(1568888888, tz=pytz.utc)}, index=[0]).dtypes
0    datetime64[us, UTC]
dtype: object
(Pdb)

Issue Description

When creating a Pandas DataFrame with a timezone-aware datetime object (e.g., datetime.datetime with tzinfo=pytz.UTC), the inferred datetime64 precision differs depending on whether the datetime is passed as a scalar or inside a list. This leads to inconsistent and potentially unexpected behavior

Expected Behavior

Both DataFrame initializations should infer the same datetime dtype (datetime64[ns, UTC]), ideally following Pandas’ default precision of nanoseconds.

Installed Versions

>>> pd.show_versions() INSTALLED VERSIONS ------------------ commit : c888af6d0bb674932007623c0867e1fbd4bdc2c6 python : 3.13.5 python-bits : 64 OS : Linux OS-release : 6.8.0-47-generic Version : #47-Ubuntu SMP PREEMPT_DYNAMIC Fri Sep 27 22:03:50 UTC 2024 machine : aarch64 processor : byteorder : little LC_ALL : None LANG : en_US.UTF-8 LOCALE : C.UTF-8 pandas : 2.3.1 numpy : 2.3.2 pytz : 2025.2 dateutil : 2.9.0.post0 pip : None Cython : None sphinx : 8.2.3 IPython : 9.4.0 adbc-driver-postgresql: None adbc-driver-sqlite : None bs4 : None blosc : None bottleneck : None dataframe-api-compat : None fastparquet : None fsspec : None html5lib : None hypothesis : None gcsfs : None jinja2 : 3.1.6 lxml.etree : None matplotlib : None numba : None numexpr : None odfpy : None openpyxl : None pandas_gbq : None psycopg2 : 2.9.10 pymysql : None pyarrow : 21.0.0 pyreadstat : None pytest : 8.4.1 python-calamine : None pyxlsb : None s3fs : None scipy : 1.16.0 sqlalchemy : None tables : None tabulate : None xarray : None xlrd : None xlsxwriter : None zstandard : None tzdata : 2025.2 qtpy : None pyqt5 : None >>>

Comment From: jbrockmendel

These both correctly give microsecond dtype on main. Can you confirm