Pandas version checks

  • [x] I have checked that this issue has not already been reported.

  • [x] I have confirmed this bug exists on the latest version of pandas.

  • [x] I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd
df = pd.DataFrame({"x":[0.2617993877991494,0.111111111111111112]}) # two such examples that result in incorrect truncation
df.to_json("out.json",double_precision=15)
df2 = pd.read_json("out.json")

Issue Description

Using the DataFrame.to_json() method to serialize a DataFrame can result in lost data when serializing floats, such that the data cannot be recovered when reloading the json file, even when using the maximum allowable double_precision parameter, at 15.

This is the result of the to_json() method incorrectly truncating floats when they should instead be reproduced in full. This seems to perhaps even be an intended behaviour, as the default value of the double_precision parameter is not even 15, but 10, resulting in even further truncation and lost data. This should not be the case, as the output of the json format stores all numbers as text strings, so there is not an inherent loss in data from the format, and a user should reasonably be able to fully retrieve an exact copy of the data they have saved in the json format at a later time.

Expected Behavior

df = pd.DataFrame({"x":[0.2617993877991494,0.111111111111111112]})
df.to_json("out.json",double_precision=15)
df2 = pd.read_json("out.json")
print(df["x"][0],df["x"][1])
# output:          0.2617993877991494 0.11111111111111112
print(df2["x"][0],df2["x"][1])
# expected output: 0.2617993877991494 0.11111111111111112
# actual output:   0.261799387799149 0.11111111111111101
print(df["x"][0]==df2["x"][0])
# expected output: True (as all we have done is saved the data to the json format and reloaded it)
# actual output :  False
print(df["x"][1]==df2["x"][1])
# expected output: True (as all we have done is saved the data to the json format and reloaded it)
# actual output :  False

Installed Versions

INSTALLED VERSIONS ------------------ commit : 0691c5cf90477d3503834d983f69350f250a6ff7 python : 3.12.2 python-bits : 64 OS : Windows OS-release : 11 Version : 10.0.26100 machine : AMD64 processor : Intel64 Family 6 Model 186 Stepping 2, GenuineIntel byteorder : little LC_ALL : None LANG : None LOCALE : English_Canada.1252 pandas : 2.2.3 numpy : 2.2.6 pytz : 2025.2 dateutil : 2.9.0.post0 pip : 25.2 Cython : None sphinx : 8.2.3 IPython : 9.3.0 adbc-driver-postgresql: None adbc-driver-sqlite : None bs4 : 4.13.4 blosc : None bottleneck : None dataframe-api-compat : None fastparquet : None fsspec : None html5lib : None hypothesis : None gcsfs : None jinja2 : 3.1.6 lxml.etree : None matplotlib : 3.10.3 numba : None numexpr : None odfpy : None openpyxl : 3.1.5 pandas_gbq : None psycopg2 : None pymysql : None pyarrow : None pyreadstat : None pytest : None python-calamine : None pyxlsb : None s3fs : None scipy : 1.15.3 sqlalchemy : None tables : None tabulate : None xarray : None xlrd : None xlsxwriter : None zstandard : None tzdata : 2025.2 qtpy : None pyqt5 : None