Pandas version checks

  • [x] I have checked that this issue has not already been reported.

  • [x] I have confirmed this bug exists on the latest version of pandas.

  • [ ] I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd
x = pd.Series([1, None], dtype='Int32').to_frame(name='col')

# This is 'Int32Dtype()' as expected
print(pd.MultiIndex.from_frame(x).to_frame()['col'].dtype)

# This is float64
pd.MultiIndex.from_frame(x).factorize()[1].to_frame().iloc[:, 0].dtype

Issue Description

If you factorize an index, it should always be the case that the factorized index has the same dtypes as the original index, but this example shows that sometimes an extension dtype will be dropped and replaced with a more generic one.

(A related bug is that factorize of an Index should preserve column names.)

pd.factorize of a DataFrame with Int32 columns shows similar behaviour.

Expected Behavior

'Int32Dtype()' in both cases

Installed Versions

INSTALLED VERSIONS ------------------ commit : 4665c10899bc413b639194f6fb8665a5c70f7db5 python : 3.9.7 python-bits : 64 OS : Darwin OS-release : 24.6.0 Version : Darwin Kernel Version 24.6.0: Mon Jul 14 11:30:29 PDT 2025; root:xnu-11417.140.69~1/RELEASE_ARM64_T6000 machine : x86_64 processor : i386 byteorder : little LC_ALL : None LANG : en_GB.UTF-8 LOCALE : en_GB.UTF-8 pandas : 2.3.2 numpy : 2.0.2 pytz : 2024.2 dateutil : 2.8.2 pip : 24.3.1 Cython : 0.29.24 sphinx : 4.2.0 IPython : 7.29.0 adbc-driver-postgresql: None adbc-driver-sqlite : None bs4 : 4.12.3 blosc : None bottleneck : 1.4.2 dataframe-api-compat : None fastparquet : None fsspec : 2024.6.1 html5lib : 1.1 hypothesis : None gcsfs : None jinja2 : 3.1.6 lxml.etree : 5.3.0 matplotlib : 3.9.4 numba : None numexpr : 2.10.2 odfpy : None openpyxl : None pandas_gbq : None psycopg2 : None pymysql : None pyarrow : 19.0.0 pyreadstat : None pytest : None python-calamine : None pyxlsb : None s3fs : None scipy : 1.13.1 sqlalchemy : 2.0.41 tables : N/A tabulate : 0.9.0 xarray : None xlrd : 2.0.1 xlsxwriter : None zstandard : None tzdata : 2024.2 qtpy : None pyqt5 : None Replace this line with the output of pd.show_versions()