Feature Type
-
[x] Adding new functionality to pandas
-
[ ] Changing existing functionality in pandas
-
[ ] Removing existing functionality in pandas
Problem Description
I wish i could write one function which will create view for normalizied data and non-normalized data while calliing thi function.
Feature Description
i see this function in this way
def value_counts_with_normalization(self, subset=None,sort=True, ascending=False, dropna=True,percentage = False):
----
non_normalized_df = self.value_counts(subset = subset
,sort = True,ascending=ascending
,dropna = dropna, normalization = False).reset_index()
normalized_df = self.value_counts(subset = subset,sort = True,ascending=ascending,dropna = dropna, normalization = False).reset_index()
multiplier = 100 if percentage else 1
normalized_df['proportion'] = normalized_df['proportion']*multiplier
return non_normalized_df.merge(normalized_df , on = subset)
Alternative Solutions
I couln't find alternative solution
Additional Context
Example of output
Comment From: dont-4get-me-men
Also. If it will be okay to add this i would like to write this code by myself)
Comment From: jbrockmendel
this is effectively the same as
left = ser.value_counts()
right = ser.value_counts(normalize=True)
result = pd.concat([left.to_frame("count"), right.to_frame("proportion")])
right? i dont think we want to add new API for this.